
TITLE: ‘~~1~ ‘_TIONs ‘F cOmcT1vELy ‘clTm ‘wvlm ‘AVES

AUTHOR(S). G. A. Glatzmaier, T-6

SUBMITTED TO. Solar Seismology from Space Conf., Srhwmass, CO,
August 17.”19, 1983

DISCLAIMER

MmR

~~~ ~ki)~~~ LosAlam.s,Ne.Mexic.87545
Los Alamos National Laboratory

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



NUMERICALSIMULATIONSOF CONNECTIVELYEXCITED GRAVITYWAVES

Gary A. Glatzmaier
Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico

Magneto-convection and gravity waves are numerically simulated with
a nonlinear, three-dimensional, time-dependent model of a stratified,
rotating, spherical fluid shell heated from below. A Solar-like
reference state is specified while globai velocity, magnetic field, and
thermodynamic perturbations are computed from the anelastic
❑agnetohyd rodyuamic equations. Convective overshooting from the upper
(superadiabatic) part of the shell excites gravity waves m the lower
(subadiabatic) part. Due to differential rotation and Coriolis forces,
convective cell pstterns propagate eastward with a latitudinally
dependent phase velocity. The structure of the excited wave motions in
the stable region is more time-dependent than that of the convective
motions above. The magnetic field tends to be concentrated over giant-
cell downdrafts in the convective zone but is affected very little by
the wave motion in the stable region.

1. INTRODUCTION

I would like to illustrate with numerical simulation how complex
the global velocity and magnetic fields must be in the Sun, ●nd how
their str~lcture and evolution in the stable region differ fxom tha. in
the unstable, convective region. The dynamic dynamo model and the
numerical method are described in Glatzmaier (1983). The anelastic HND
equations reduce to a 172h-order eystem of ●quations with each of the
six dependent variables expanded in 1024 spherical harmonics ●nd 17
Chebyshev polynomials. A semi-implicit time-integration scheme is
employed. The ●nelastic approximation filters out ●coustic waves but
not gravity or convective modes,

A typical snapshot of the simulated motlona is shown in Figure 1
where the mass flux (velocity times density) is plotted in the
equatorial plane. The top ●nd bottom boundaries correspond to 93% ●nd
56% of the Solar radius, respectively. There ● re seven prensure scale-
heighta ●crons the shell, The@-Vo) profile in Figure 2 defines the
uuperadiabatic and uubadiabatic regions. (The stable region in a



standard Solar mixinglength model is much more subadiabatic than it is
in this model. See further conmnents below.) Notice in Figure 1 how
convective motions overshoot a short way into the stable (subadiabatic)
region. This overshooting excites small amplitude gravity waves in the
differentially rotating fluid,
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Fi@ure 1. t!aan flux vectorn plotted in the equatorial plane viewed
tow~rd the north.



Generally, buoyancy forces do positive work in the superadiabatic
region by driving convection; while, in the subadiabatic region, they do
negative work by damping gravity waves. This is illustrated in Figure 2
where the horizontally averaged work done by buoyancy is plotted VF.
radius. The negative buoyancy work in the stable region is small
because the perturbations are small relative to those in the convection
zone. Notice how buoyancy does positive work a short way into the
subadiabatic region. This is due to the overshooting of sinking fluid
that remains heavier than the surroundings for a short distance into the
subadiabatic region. ‘l’he negative work done by buoyancy near the top of
the convec+.ion zone is required to he+ip decelerate rising fluid and
accelerate sinking fluid (Glatzmaier and Gilman 1981b).

We will examine the struct~lre &nd evolution of the velocity and
magnetic fields - first in :he unstable (superadiabatic) region and then
in the stable (subadiabatic) region.
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Figure 2. Horizontally ●veraged (V-V~) and buoyancy work density per
time plott~d VU. radius.



2. THE UNSTABLEREGION

In Figure 3, the radial component of the velocity is plotted
(relative to the rotating frame of reierence) in a spherical surface
just btlow the top boundary at four different times. The snapshots were
taken a week apart. As suggested by linear anelastic calculations
(Glatzmaier and Gilman 1981b), north-south rolls are preferred because,
for these, Coriolis forces are more easily balanced by pressure gradient
forces, However, nonlinear, ❑ultimode calculations are required to
study the complicated structure and evolution of the convective cells.

One can see, by examining these snapshots, how the cell pattern in
the ●quatorial region propagates eastward relative to the patterns in
the polar region. As a result, an updraft region is periodically
shedred apart at mid-latitude and subsequently joined to the next
updraft re8ion. The eastward cell velocity in the equatorial region is
about 10% of the average :~lar rotation rate,

There are two reasofis for this type of evolution, The cbvious one
1s the ncnlinear effect of the latitudinal differential rotation. That
is, the north-south rolls become deformed beceuse the equatorial region
rotates faster due to the transport of angular momentum (Gilman 1977,
Glatzmaier and Gilman 1982). The other reason is a linear effect due to
Coriolis forces (Glatzmaier and Gilman 1981a). As rising fluid in c
north-south roll expands, Coriolis forces cause it to rotate in the
opposite sense of the global rotation generating negative local
vorticity, Positive local vorticit,y is generated when sinking fluid
contracts. Consequently, since positive vorticity exists in north-south
rolls that are east of updrafts and negative vorticity in rolls east of
downdrafts, the phase of the north-south rolls propagates eastward.
Since this effect is greatest. where gravity is perpendicular to the
rotatio.: axis, the resulting eastward phase velocity is maximum in the
equatorial region,

Now we examine, in Figure 4., the corresponding structure and
●volution of the+ radial component of the magnetic field in the same
spherical surface at the same four times, In this surface the magnetic
energy density is approximately one thousand times smaller than the
kinetic energy density. As a result, both magnetic field polarities
tend to bu concentrated over the downdrafts of the giant cells due to
the convergence of horizontal flow (Glatzmaier 1983), This can be seen
by carefully comparing Figures 3 and 4, Since the peak radial
components of the magnetic field exist at mid-latitude, they do not
experience the large eaatward phase velocity >f the convective cells in
the equatorial region. However, by close examination, one can see how
the magnetic field structure changes slightly as the convective rolls
are nheared at mid-latitude.



3. THE STABLE REGION

The structure and evolution of the velocity and magnetic fields in
the stable region are quite different than what has just been described
for the unstable region. The radial component of the velocity is
plotted in Figure 5 for t;!e same four times but .n a spherical surface
just above the bottom boundary. Since here buoyancy is a restoring
force, the velocity consists of oscillatory wave motions. However,
these are not simple linear gravity ❑odes but highly structured, time-
dependent, nonlinear waves which are coi~tinually tein~ excited by
convective overshooting and affected by Coriolis and Lorentz forces on a
differentially rotating fluid background in spherical geometry.

The corresponding radial component of the magnetic field, plotted
in Figure 6, shows little change with time and very little correlation
with the velocity field. This is probably because the oscillatory fluid
motions deep in the stable region do not have horizontal convergence
properties as do the convective motions in the unstable region. Also ,
the magnetic ●ergy density at. this depth is only ten times smaller than
the kinetic energy density.

4, SUMMARY

These numerjcal simulations were presented to illustrate how
complicated the structure and evolution of the velocity and magnetic
fields must be in the Sun. They illustrate the latitudinally dependent
eastward propagation and resulting shearing of the north-south rolls.
Certainly ibis makes the observation of Solar giant. cells difficult,
especially when the data is averaged over s:veral weeks in order to
reduce the small-scale Solar noise (Howard and ~,aBonte 1980, Gilman and
Glatzmaier 1980). On the other hand, the simulated large-scale magnetic
fields, concentrated over giant-cell downdrafts near the surface at

mid-latitude, Checge very little with time and resemble large-scale
Solar magnetic field observations (Howcrd 1977),

The simulations also illustrate how complicated gravity wave
mot ions are In the stable region and how they differ from convective
motions in the unst~ble region. However, the simulations were not meant
to predict periods of the excited gravity modes. The periods, which are
of the order of a few weeks, probably are not realistic for two reasons.
The model’s impermeable bottom boundary forces an artificial node ●nd
enhances the higher order spherical harmonic modes (smaller scales), In
addition, (V-V*] in the stable region is much smaller than it ~S in a

standard Solar model; consequently, the gravity wave periods are much
larger than they would be if the stable region were more subadiabstic.
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Fi8ure 3. Radial component of velocity plotted in a spherical surface
just below the top boundary at one week interval~. Solid (broken)
contours represent upward (downward) velocity.
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Figure 4, As in Figure 3, but
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for the radial component of the magnetic



/- I

9

RADIAL VELOCITY

Figure 5, As in Figure 3, but for a spherical surface just above the
bottom boundary.
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Figure 6. As in F:
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A new version of the code is being developed that will model an
entire sphere, employ time-dependent sub-grid scale eddy diffusivities,
and incorporate a (v-vA.) profile based on a standard Solar model. This
new code should be able to predict more realistic gravity wave
amplitudes and periods. However, the present results illustrate how
difficult it would be to observe these highly structured, time-dependent
gravity modes, especially if the interpretation is based on linear
❑odels that do not account for convective motions, Coriolis forces,
Lorentz forces, or differential rotation.
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